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Abstract

Semantic segmentation models currently struggle with urban
street view image segmentation due to an underutilization
of multi-scale feature information and the excessive com-
putational costs associated with generating redundant infor-
mation, which significantly hinders the performance of seg-
mentation models. Furthermore, considering the innate spa-
tial particularities of urban street view data, it is impera-
tive for segmentation models to place a greater emphasis
on spatial information. To address this, we integrate multi-
scale convolutions and Ghost Attention Heads into the seg-
mentation framework. Multi-scale convolutions will be incor-
porated into the encoder to expand the network’s receptive
field, thereby capturing contextual information more effec-
tively. A Ghost Attention Head is designed during the decod-
ing process. This module, by employing efficient and cost-
effective operations along with a separable attention mecha-
nism, guides the network to focus more on spatial informa-
tion. This approach not only significantly reduces compu-
tational expenses but also addresses the issue of neglecting
spatial information. Experimental results on CamVid show a
9.7% mIoU improvement (71.32%) over FCN, with ablation
studies validating the effectiveness of the module.

Introduction
Semantic segmentation is a pivotal domain within com-
puter vision that entails pixel-level prediction, assigning
each pixel in an image to its corresponding class or category.
Urban scene segmentation, as a foundational yet challeng-
ing task within semantic segmentation, aims to dissect and
deeply analyze scene objects into distinct regions associated
with semantic category information. In recent years, algo-
rithms for urban street view segmentation have been widely
applied to autonomous driving tasks in the field of computer
vision, achieving significant outcomes.

Image segmentation algorithms are broadly categorized
into conventional and deep learning-based approaches. Tra-
ditional methods, rooted in mathematical principles, rely
on features like texture and shape for prediction. Key tech-
niques include threshold-based and edge detection methods.
Threshold segmentation leverages pixel color or grayscale
values, using specific thresholds to classify pixels (Kapur,
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Sahoo, and Wong 1985), but struggles in scenarios with sim-
ilar or intertwined grayscale levels, such as in autonomous
driving. Edge detection identifies boundaries to segment im-
ages (Canny 1986), performing well with distinct grayscale
variations and low noise but showing limitations in more
complex settings.

The advent of deep learning has revolutionized image seg-
mentation, driven by the powerful feature representation of
Convolutional Neural Networks (CNNs). The Fully Con-
volutional Network (FCN) (Long, Shelhamer, and Darrell
2015), a seminal approach, replaces fully connected layers
with convolutional ones and employs transposed convolu-
tion to restore feature map size, enabling direct segmentation
predictions. However, FCN lacks spatial consistency and
fails to fully leverage pixel relationships, leading to coarse
results. U-Net (Ronneberger, Fischer, and Brox 2015) ad-
dresses these limitations with a U-shaped architecture, using
upsampling instead of pooling and introducing skip connec-
tions between encoding and decoding layers to recover and
reuse features.

Semantic segmentation network architectures are typi-
cally classified into encoder-decoder structures and multi-
scale feature-based networks. Encoder-decoder models,
such as U-Net and SegNet (Badrinarayanan, Kendall, and
Cipolla 2017), use a backbone for feature extraction and
a decoder for segmentation, but often fail to fully utilize
multi-scale features from the backbone, limiting contextual
integration and performance. Multi-scale networks enhance
contextual understanding by processing features of varying
scales through convolutions and pooling. However, they of-
ten overlook the varying semantic importance of features
across scales, amplifying noise and introducing redundancy.
Additionally, many networks upscale images using deconvo-
lution or interpolation without addressing noise in low-level
features or the varying importance of cross-layer features,
which impacts detail recovery. Although PSPNet (Zhao et al.
2017) employs pyramid pooling to capture multi-scale infor-
mation, it neglects spatial locality, further constraining seg-
mentation accuracy.

In summary, the contributions of this paper are as follows:

• Multi-Scale Dilated Convolution: Integrated into the
backbone, it expands the receptive field for better contex-
tual feature extraction and captures multi-level semantic
information.



• Ghost Attention Head Decoder: Reduces computa-
tional cost by minimizing redundancy and, with separa-
ble attention, enhances spatial focus for refined segmen-
tation.

Related Works
Multi-scale
To capture multi-scale contextual information, PSPNet
(Zhao et al. 2017) employs average pooling of varying sizes
to fuse features at different scales, effectively extracting con-
text. However, successive pooling and downsampling sig-
nificantly reduce image resolution. DeepLabv2 (Chen et al.
2017) addresses this by using dilated convolution to expand
the receptive field without increasing parameters, integrat-
ing richer context. Its ASPP module employs parallel di-
lated convolutions with different rates to capture multi-scale
information, improving robustness in multi-class segmenta-
tion and mitigating resolution loss. However, its high com-
putational cost and slow inference limit its suitability for
real-time applications. Inception networks (Szegedy et al.
2015; Ioffe 2015; Szegedy et al. 2017) leverage parallel
branches with varied convolutional kernels to aggregate fea-
tures but at the expense of increased complexity. DFANet
(Li et al. 2019), in contrast, introduces a multi-tiered con-
nectivity structure to optimize receptive fields across scales
while maintaining efficiency.

BiSeNetV2 (Yu et al. 2021) employs a dual-channel ar-
chitecture for efficient real-time semantic segmentation. Its
detail branch encodes rich spatial information, while the se-
mantic branch uses rapid downsampling to enhance feature
representation and expand the receptive field. A bilateral
guidance aggregation layer fuses these complementary fea-
tures, achieving a balance between speed and accuracy. Hy-
perSeg (Nirkin, Wolf, and Hassner 2021), on the other hand,
adopts a nested U-shaped architecture to capture multi-scale
semantic information. However, both approaches are opti-
mized for low-resolution street view images, with signif-
icant inference speed degradation when processing high-
resolution inputs.

Spatial Information
In terms of spatial information, standard convolutional oper-
ations do not explicitly consider spatial information and in-
teractions, focusing primarily on feature extraction. In con-
trast, the SENet (Hu, Shen, and Sun 2018)introduces dy-
namic weighting to address this limitation. It first com-
presses global spatial information and learns feature impor-
tance across channels. The excitation component then dy-
namically allocates weights, enabling enhanced spatial in-
teractions and more effective feature representation.

The Convolutional Block Attention Module (CBAM)
(Woo et al. 2018) refines feature maps using separate chan-
nel and spatial attention modules. To capture pixel relation-
ships, a self-attention mechanism (Vaswani 2017) is intro-
duced, enabling the extraction of contextual information be-
tween pixels. This mechanism models spatial dependencies
by calculating the relevance between a given Query and dif-
ferent Keys, and then computing weight coefficients for the

corresponding Values. The attention Value is derived as a
weighted average based on these coefficients.

Dual Attention Network (DANet) (Fu et al. 2019) em-
ploys two parallel attention modules to capture spatial and
channel dependencies, thereby achieving interrelation. The
spatial attention module obtains feature information at each
location through spatial feature weighting, while the channel
attention module correlates relevant features on the channel
dimension. Eventually, the outputs of these two modules are
fused to obtain enhanced feature representations.

Method
The overview of network structure
Figure 1 shows the overall structure of the network, and the
overall network in this paper is the structure of Encoder-
Decoder. The specific descriptive information of each part
of this network is as follows:

1) The network employs ResNet-50 (He et al. 2016) as the
feature extractor, with its architecture serving as the encoder.
As input passes through each BasicBlock, a feature map is
produced with a spatial resolution that is reduced by a factor
of 2. After traversing a total of 4 BasicBlocks, the final fea-
ture map, with a resolution of 1/16 of the original input size,
is obtained as the output of the backbone network.

2) To capture richer contextual information and facilitate
the fusion of features across varying receptive fields and sub-
regions for improved feature representation, Zhao et al. in-
troduced a pyramid pooling module (PPM) in PSPNet (Zhao
et al. 2017). In contrast, this paper proposes a novel multi-
scale convolution approach, which is directly integrated into
the ResNet-50 backbone. This method inserts three sets of
multi-scale convolutions sequentially between different lay-
ers of ResNet-50. The proposed design enables the encoder
to effectively fuse and extract contextual information during
the feature extraction process, thereby enhancing the overall
feature representation.

3) In the head of the network, to leverage the feature map
for extracting additional information with minimal compu-
tational overhead, we incorporate the Ghost module (Han
et al. 2020) within Seghead. This approach utilizes a more
efficient method than traditional convolutions to generate re-
dundant features. By combining a “small amount of tradi-
tional convolutional computation” with a “lightweight re-
dundant feature generator” ,the overall computational bur-
den of the network is reduced while maintaining its predic-
tive accuracy.

4) When utilizing the semantic information from the en-
coder, it is crucial to account for the presence of noise in the
features and the variability of the information across differ-
ent feature maps. To focus more spatially on relevant feature
information in specific regions of the extracted feature map,
while minimizing the influence of noise, a separable spatial
attention mechanism is employed in Seghead. The feature
maps are fed into the attention module, which consists of
three deep separable convolutions, each with a kernel size
of 3 and a stride of 2, to generate the spatial attention map.
This map encodes spatial locations that warrant greater at-
tention and is then resized to the original dimensions via lin-
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Figure 1: The overview of our network architecture.

ear interpolation upsampling. The final output is obtained by
applying a Sigmoid activation to the attention map.

5) Given the integration of the Ghost module and the Spa-
tial Attention module in the head of the network, this compo-
nent is collectively referred to as the Ghost Attention Head.

Multi-scale convolution operator
Since the ResNet-50 backbone lacks the capability to cap-
ture the relationships between different categories in the
global scene when addressing image segmentation tasks,
this paper aims to improve the feature extraction perfor-
mance of ResNet-50 by incorporating multi-scale image in-
formation and leveraging features of varying dimensions.
These enriched features are then utilized for the segmenta-
tion task. To achieve this, we propose a multi-scale atrous
convolution operator, which is integrated into different lay-
ers of the ResNet-50 backbone. This addition enables the
network to effectively capture multi-scale feature informa-
tion, thereby enhancing the model’s expressive power.

The three multi-scale convolution operators, denoted as
[MsConv2, MsConv3, MsConv4], are positioned prior to
layer2, layer3, and layer4, respectively. The number of
grouped convolutions for each operator is set to [2, 3, 4],
with the sequence of group sizes being [1, 4, 8, 16]. For each
operator, the input channel size of the convolution kernels
remains constant, while the output channels are reduced to
1/N of the original number of convolutions, where N rep-
resents the number of convolutions in the respective opera-
tor. The final output is obtained by concatenating the results
from all N convolutions. This design ensures the extraction
of richer contextual features and more effective fusion of in-
formation, while simultaneously limiting the increase in the
number of parameters, thereby improving network accuracy.

Ghost module
The ResNet-50 backbone generates many similar feature
map pairs during the feature extraction process on the in-
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Figure 2: The details of Ghost module.

put image. Redundancy in feature maps has been identified
as a key factor contributing to the success of deep neural
networks [13], and as such, we choose to leverage, rather
than eliminate, these redundant feature maps. Building on
this, this paper incorporates the Ghost module into Seghead,
based on the ResNet-50 backbone. The Ghost module em-
ploys a series of linear transformations and cheap operations
to generate multiple similar feature maps, which can be ex-
tracted from the original feature maps at minimal compu-
tational cost. This approach reduces the model’s computa-
tional complexity while preserving its ability to maintain
high performance in terms of network similarity. The spe-
cific architecture is illustrated in Figure 2.

The input feature map is first passed through a 1 × 1
standard convolution, followed by feature extraction via a
depthwise separable convolution with a 3 × 3 kernel. The
depthwise separable convolution is an efficient linear op-
eration. In this paper, the number of output channels is set
to init channels × ratio, where the standard convolution
generates initchannels feature maps. Each of these feature
maps is then processed through a linear operation, produc-
ing init channels× (ratio− 1) feature maps. Finally, the
feature maps obtained from the linear operation are concate-
nated with those generated by the standard convolution, re-
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Figure 3: The details of attention module.

sulting in the final output. This output represents the final
result of the Ghost module.

Spatial attention module
When viewing an image, a person does not perceive the en-
tire picture at once, but rather focuses on key or focal re-
gions. The same principle applies to semantic segmentation.
The backbone network, however, does not account for the
varying importance of different spatial locations during fea-
ture extraction, and the multiple convolutional operations
lead to a loss of spatial information. To address this, we in-
troduce a spatial attention module in Seghead, as shown in
Figure 3, to generate a spatial weight matrix. This enables
the network to focus more effectively on specific regions of
the image, thereby refining the feature representations. The
implementation steps are as follows:

The input feature map P ∈ RC×H×W is downsampled
using three 3 × 3 depthwise separable convolution opera-
tions to extract features, yielding the feature map D(P ).
This process is computationally more efficient than stan-
dard convolution. Subsequently, a linear interpolation up-
sampling operation restores the feature map to its original
spatial dimensions H×W , which is then processed through
a Sigmoid function to obtain the final spatial attention map
S(A) ∈ RH×W . This is illustrated in Formula 1.

S(A) = σ(Upsample(D(P ))) (1)

where σ() represents the Sigmoid operation, and UpSam-
ple denotes the upsampling operation. The spatial attention
map S(A) ∈ RH×W is then element-wise multiplied with
the original input feature map P ∈ RC×H×W to produce
the spatially reweighted feature map Z ∈ RC×H×W , as
described in Formula 2.

Z = S(A)× P (2)
Finally, the spatially reweighted features Z ∈ RC×H×W

are fused with the original input feature map P ∈ RC×H×W

to produce the module’s final output L, as defined in For-
mula 3.

L = Z + P (3)

Experiment
Experimental design
Dataset: The proposed network model was evaluated us-
ing CamVid (Brostow, Fauqueur, and Cipolla 2009), a com-

monly used image dataset in the field of segmentation.
Where the CamVid dataset provides 369 images for train-
ing, 100 images for validation and 232 images for testing,
there are a total of 11 classes of objects (class = 12) in this
dataset, where 0 is the background. Evaluation metrics:
Using the mean intersection over union (mIoU), the mean
accuracy (mAcc) for all categories. The formula of mIoU is
shown in Formula 4.

MIoU =
1

k + 1

k∑
i=0

pii∑k
j=0 pij +

∑k
j=0 pji − pii

(4)

where k represents the total number of categories in the
dataset, i denotes the true class, j denotes the predicted
class, and pij represents the number of pixels originally be-
longing to class i but predicted as class j. The metric mloU
indicates the calculated result. The formula for mAcc is
shown in Formula 5.

mAcc =

∑k
i=1 CAi

k
(5)

where k denotes the number of categories in the dataset,
CAi denotes the classification accuracy of the i th category,
and mAcc denotes the calculated result.

Network parameter settings: Our experiments were per-
formed on Pytorch with graphics card 3090. first we cropped
the image size to (480, 480) and batch size was set to 16. the
base learning rate was 0.01, the weight decay was 0.0001,
the optimizer used stochastic gradient descent (SGD), and
the epoch was 120 in trraining.

Analysis of experimental results
1)Performance Analysis of the Ghost Module: To eval-
uate the effectiveness of the Ghost module and its im-
pact on enhancing the overall network performance, this
study removes the spatial attention module from the Seg-
head and conducts comparative experiments on the CamVid
dataset. Specifically, the experiments compare the perfor-
mance of the ResNet-50 backbone network with and with-
out the Ghost module integrated as the Seghead. The results,
as presented in Table 1 , indicate that the introduction of
the Ghost module leads to a 0.29% improvement in mIoU.
This demonstrates that the lightweight module, which gen-
erates redundant features through computationally inexpen-
sive operations such as linear transformations, not only en-
ables higher accuracy but also achieves more precise seg-
mentation compared to the original baseline.

Baseline Ghost Module mIou(%) mAcc(%) allAcc(%)

ResNet-50 × 68.59 78.20 89.53
ResNet-50

√
68.88 78.59 89.60

Table 1: Performance of Ghost module on Camvid-test.
2)Performance Analysis of the Ghost Attention Head:

Building on the previous findings, this study introduces
the spatial attention module to further enhance the model
and conducts comparative experiments. Specifically, starting



from the baseline, the Ghost module is first incorporated as
the Seghead, followed by the addition of the spatial attention
module to form the complete Ghost Attention Head. The ex-
perimental results are summarized in Table 2. The baseline
also employs a pre-trained ResNet-50 as the backbone net-
work, and the following three schemes are designed to verify
the effectiveness of Ghost Attention Head:
• (a) Utilizing only the ResNet-50 backbone network;
• (b) Extending (a) by integrating the Ghost module as the

Seghead;
• (c) Extending (a) by integrating the Ghost Attention

Head as the Seghead.
Table 2 uses the Ghost Attention Head scheme compared
to baseline and baseline+Ghost Module both improve the
segmentation performance to some extent, so it can be con-
cluded that the addition of spatial attention module on top of
Ghost Module to assign weights to spatial location informa-
tion features has more accurate segmentation performance
than the first two schemes, where compared to baseline,
mIoU improves by 0.73% and mAcc improves by 0.77%,
compared with adding Ghost Module mIoU improves by
0.44% and mAcc improves by 0.38%, thus verifying the ef-
fectiveness of Ghost Attention Head.

Baseline Ghost Module Ghost Attention Head mIou(%) mAcc(%) allAcc(%)

ResNet-50 × × 68.59 78.20 89.53
ResNet-50

√
× 68.88 78.59 89.60

ResNet-50 ×
√

69.32 78.97 89.69

Table 2: Performance of Ghost Attention Head on Camvid-
test.

3)Ablation experiments:In order to further verify the ef-
fectiveness of the proposed module, we conducted ablation
experiments on this paper, as shown in Table 3. The ex-
perimental data show that the Ghost Attention Head and
the multi-scale convolution operator proposed in this paper
have different degrees of performance improvement com-
pared with Baseline, which also proves the importance of
incorporating Ghost Attention Head and multi-scale convo-
lution into the model again.

Baseline mIou(%) mAcc(%)

baseline 68.59 78.20
baseline+GhostAttentionHead 69.32 78.97
baseline+GhostAttentionHead+Muti-conv 71.32 79.23

Table 3: The details performance of each component in our
proposed.

4)Comparison experiments with other classical se-
mantic models: In order to ensure the objectivity and uni-
versality of the views of this paper, our proposed model
was compared with FCN, BiSeNetv2 and other algorithms
on the CamVid dataset, and the experimental results are
shown in Table 4. As can be seen from Table 4 the values
of the models studied and proposed in this paper are 71.32%
and 79.23% in mIoU and mAcc evaluation metrics, respec-
tively, which is 9.7% and 5.58% improvement compared to
FCN in mIoU and mAcc evaluation metrics, and 4.13% and
0.52% improvement compared to BiSeNetv2 in in mIoU and

(a) image (b) predict (c) label

Figure 4: Fig. 4.The segmentation effect of this model on
road streetscape.

mAcc evaluation metrics, Compared with BisENetv1(Yu
et al. 2018), DFANet(Li et al. 2019), EDANet(Lo et al.
2019) and DenseDecoder(Bilinski and Prisacariu 2018), the
mIoU evaluation metrics have been improved to different de-
grees.

Model mIou(%) mAcc(%)

FCN 61.62 73.65
BiSeNetv2 67.19 78.71
BiSeNetv1 68.70 -
DFANet 64.70 -
EDANet 66.40 -
DenseDecoder 70.90 -
Ours 71.32 79.23

Table 4: The details performance of each component in our
proposed.

5)Model visualization on the CamVid dataset: In order
to more intuitively show the segmentation accuracy of the
model proposed in this paper, we also visualized the model
on the CamVid dataset, and Figure 4 shows the prediction
results of the model for some images in the test set. Where
(a) is a random street view in Camvid, (b) is the prediction
made by the model, and (c) is the label.

Conclusion
This paper presents a Multi-Scale Convolutional and Ghost
Attention Head framework integrated into the ResNet-50
backbone. The multi-scale convolutional module enhances
feature extraction by capturing contextual information at dif-
ferent scales. The Ghost Attention Head, with its Ghost and
Separable Attention modules, improves segmentation per-
formance by reducing computational costs and refining spa-
tial features. Experimental results on the CamVid dataset
confirm the effectiveness and efficiency of the proposed ap-
proach.
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